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Abstract. Multi-dimensional time series is playing an increasingly
important role in the “big data” era, one noticeable representative being
the pervasive trajectory data.Numerous applications ofmulti-dimensional
time series all require to find similar time series of a given one, and regard-
ing this purpose, Dynamic Time Warping (DTW) is the most widely used
distance measure. Due to the high computation overhead of DTW, many
lower bounding methods have been proposed to speed up similarity search.
However, almost all the existing lower bounds are for general time series,
which means they do not take advantage of the unique characteristics of
higher dimensional time series. In this paper, we introduce a new lower
bound for constrained DTW on multi-dimensional time series to achieve
fast similarity search. The key observation is that when the time series is
multi-dimensional, it can be rotated around the time axis, which helps to
minimize the bounding envelope, thus improve the tightness, and in con-
sequence the pruning power, of the lower bound. The experiment result
on real world datasets demonstrates that our proposed method achieves
faster similarity search than state-of-the-art techniques based on DTW.

1 Introduction

Multi-dimensional time series are playing an increasingly important role in this
“big data” era. For example, with the rapid development of wireless communica-
tion and location positioning technologies, we can easily acquire the location of
a moving object, e.g. a person, a vehicle, or an animal, at different time. Such
movements are generally recorded as a series of triples (x, y, t), where x and y
are coordinates and t is the sample time. When talking about the dimensionality
of time series, the sample time is often omitted, so such trajectory is regarded
as “two dimensional” time series, which is a representative of multi-dimensional
time series. Various time series data has enabled many interesting applications,
such as finding potential friends according to similar trajectories [12], human
activity recognition [20], and climate change prediction [15] etc.

A basic and important operation in various applications of multi-dimensional
time series is to find similar time series of a given one, which is a similarity search
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problem. The similarity between two time series is often decided by the distance
between them. According to the thorough experiments carried out in [19], among
all the proposed distance measures for time series data, DTW may be potentially
the best one, and it has achieved great success in highly diverse domains, such
as DNA sequence clustering [13], query by humming [26], RFID tag location
[18] etc. The straightforward computation of DTW takes quadratic time, which
renders it unacceptably slow for applications involving large datasets. In the
past years, many techniques have been proposed to prune unqualified candidates
by first computing a lower bound, thus reduce the number of required DTW
computations [9,11,21,26]. To the best of our knowledge, all the proposed lower
bounding techniques are for general time series, which means they don’t care
the dimensionality of the data, although there are efforts to extend some lower
bounding methods to multi-dimensional time series, such as [14,17].

We notice that these general lower bounding techniques can be further
improved if we consider some unique characteristics of time series in higher
dimensional space. For example, when a time series is in two or more dimensional
space, it can be rotated around the time axis without changing its geometrical
property, thus the distance between two time series will not be affected. This
feature of multi-dimensional time series can be utilized to get a tighter lower
bound for candidate pruning.

Inspired by this observation, we introduce a new lower bound called
LB rotation to speed up similarity search process. The basic idea is to, for each
time series, rotate it by an appropriate angle to reduce the volume of its envelope,
because it has been pointed out in [9] that “the envelope is wider when the under-
lying query sequence is changing rapidly, and narrower when the query sequence
plateaus”. In such a way, we can improve the tightness of the lower bound, and
prune more unqualified candidates to reduce the required DTW computations.

In order to get a satisfactory lower bound, we need to solve several problems:

– Directly rotate the whole time series may not be a good idea. As
we will show later, the more straight a time series is, the better improvement
we can get. Thus we first perform segmentation on the target time series to
divide it into several segments as straight as possible, then deal with each
segment respectively.

– Deciding the rotation angle. This is a key factor affecting the effective-
ness of LB rotation. Rather than directly reducing the volume of the enve-
lope, we aim at reducing the volume of its bounding hypercube, since the
envelope is included in the hypercube. For every time series segment, we can
find the direction of its major axis by least square fitting. The rotation angle
is just the included angle between this direction and the x axis.

– Computing the lower bound. After segmentation, the warping range of a
point in the candidate time series may intersect with several segments of the
query time series, thus we have to compute the distance between the point
and its matching point in each segment, and sum up the minimal distance to
get final lower bound. We first construct extended envelope for each segment,
then locate the corresponding matching point for distance computation.
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To demonstrate the superiority of LB rotation, we compare it with LB Keogh
[9], which is the most widely used lower bound for constrained DTW, and
LB Improved [11], which is recognized as the only lower bound that actually
improves LB Keogh [19], through experiments on real world datasets. The exe-
cutable and datasets we used are freely available at [1]. We will show that increas-
ing warping constraint has smaller impact on the tightness of LB rotation, while
it may hurt the tightness of LB Keogh and LB Improved considerably.

Our major contribution can be summarized as follows:

– We propose a new lower bound LB rotation for constrained DTW based on
time series rotation to achieve fast similarity search on multi-dimensional
time series. It can shrink the envelope of time series, thus improve the tight-
ness of lower bound, which helps to reduce similarity search time.

– We improve the effectiveness of LB rotation by dividing the time series into
several segments and rotating each segment respectively, rather than directly
rotating the whole time series. The experiment result on real world datasets
shows that LB rotation is more effective than existing lower bounds.

The rest of this paper is organized as follows: Section 2 reviews related work,
and introduces some necessary extensions. Then we demonstrate the details of
LB rotation in Section 3. Experiment results and discussions are presented in
Section 4. Section 5 concludes this paper.

2 Preliminaries

2.1 Related Work

Since retrieval of similar time series plays an important role in many appli-
cations, such as time series data mining, a lot of effort has been devoted to
solving this problem, and many distance measures have been proposed, such as
Euclidean Distance [7], Dynamic Time Warping (DTW) [21], Longest Common
Subsequences (LCSS) [5], Edit Distance on Real sequence (EDR) [4], Edit dis-
tance with Real Penalty (ERP) [3], etc. Among them, DTW is the most widely
used distance measure on time series, because of its effectiveness and robustness.

Due to the high computation complexity of DTW, there are many techniques
developed for it to speed up the distance computation. These techniques can be
mainly divided into two categories: a) directly speed up DTW computation; b)
reduce the number of DTW computations via lower bounding. Lower bounding
DTW is a widely used technique, because it can filter a large part of candidate
time series using relatively cheap computation. Generally, for any lower bounding
algorithm, the nearest neighbor searching process is shown in Algorithm 1. It’s
clear that the tighter a lower bound is, the higher its pruning power will be,
since more candidates will be discarded in Algorithm 1.

The early attempts to lower bound DTW are LB Yi[21] and LB Kim[10].
Since they only use the global information of the time series, such as the maximal
and minimal values to compute the lower bound, their results are relatively
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Algorithm 1. Nearest time series search using lower bounding method
Input: Q � query time series
Input: C � database of candidate time series
Output: the index of nearest time series regarding Q
1: function NearestNeighbor(Q,C)
2: distmin = ∞
3: for i ← 1 to |C|
4: lb ← lower bound(Q, Ci)
5: if lb < distmin

6: true dist ← DTW (Q, Ci) � Ci is the ith candidate in the database
7: if true dist < distmin

8: distmin ← true dist
9: index ← i

10: return index

loose. Keogh et al. [9] took advantage of the warping constraint to construct
an envelope for the query time series, and proposed the first non-trivial lower
bound LB Keogh for DTW, which greatly eliminates the number of required
DTW computations.

There are several extensions of LB Keogh, e.g. [11,16,25,26]. Among them,
LB Improved [11] is recognized as the only improvement that has repro-
ducible result to reduce searching time [19], thus we compare LB rotation
with LB Keogh and LB Improved in Section 4. LB Improved is built upon
LB Keogh, which improves the tightness through a second pass. It is computed
as LB Improved(Q,C) = LB Keogh(Q,C) + LB Keogh(Q,H(C,Q)), where
H(C,Q) is the projection of C on Q [11].

Generally for almost all the non-trivial lower bounding techniques, there are
two prerequisites: a) DTW must be compliant to a constraint enforced on the
warping path; b) the trajectories should be of the same length. If not otherwise
stated, we assume these conditions are already met hereafter. For more details
of lower bounding DTW, please refer to [9,11,19].

We note that these lower bounding techniques are all for general time series,
without considering the unique characteristics of high dimensional time series.
Actually, when it comes to time series in two or more dimensional space, we
can rotate the time series to “flatten” them, thus reduce the volume of their
bounding envelopes, which will improve the tightness of the lower bound, as we
will show in the following of this paper.

2.2 Extending LB Keogh and LB Improved to Multi-dimensional
Time Series

Now we introduce the extended lower bounds for multi-dimensional time series,
and use them for experimental comparison in Section 4.

Originally, LB Keogh and LB Improved are proposed to deal with one dimen-
sional (univariate) time series. We start extending them to multi-dimensional
time series by introducing multi-dimensional bounding envelopes.
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Definition 1. The bounding envelope of a time series Q of length n in l dimen-
sional space, with respect to the global warping constraint c, is defined as

Env(Q) = (U1, U2, . . . , Un, L1, L2, . . . , Ln), (1)

where Ui = (ui,1, ui,2, . . . , ui,l), Li = (li,1, li,2, . . . , li,l), and ui,p = max{qi−c,p :
qi+c,p}, li,p = min{qi−c,p : qi+c,p}, where qi is the ith point in Q.

For LB Keogh, we adopt the extension introduced in [14].

Definition 2. The multi-dimensional extension of LB Keogh is defined as

LB MV (Q,C) =

√
√
√
√
√
√

n∑

i=1

l∑

p=1

⎧

⎪⎨

⎪⎩

(ci,p − ui,p)
2
, if ci,p > ui,p

(ci,p − li,p)
2
, if ci,p < li,p

0, otherwise

(2)

where Q is the query time series, C is the candidate time series, ci is the ith
point in C, up and lp are the maximum and minimum values of dimension p,
with respect to Q. n is the length of the time series, and l is the dimensionality
of each point in the time series.

The proposition below is proved in [14].

Proposition 1. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB MV (Q,C) ≤ DTW (Q,C).

Following [14], we extend LB Improved to multi-dimensional time series. We
only need to extend the projection function (equation (1) in [11]) as follows.

Definition 3. The projection of C on Q in multi-dimensional LB Improved is
defined as

H(C,Q)i,p =

⎧

⎪⎨

⎪⎩

ui,p if ci,p ≥ ui,p

li,p if ci,p ≤ li,p

qi,p otherwise
, 1 ≤ p ≤ l (3)

Similarly, we can prove the following proposition.

Proposition 2. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB Improved(Q,C) ≤ DTW (Q,C).

The proof of Proposition 2 is a straightforward extension of Proposition 1,
since LB Improved simply uses LB Keogh twice; we omit it for brevity.

For the succinctness of notations, hereafter we use LB Keogh and
LB Improved to refer to the multi-dimensional extension of the original version
respectively. By convention, we also use time series and trajectory interchange-
ably when referring to two or more dimensional time series.
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3 LB rotation

As discussed in Section 1, when it comes to two or more dimensional space, the
query time series can be rotated by a certain angle to minimize the volume of
its envelope, thus improves the tightness of the lower bound. We will present the
details in this section.

3.1 Intuitive Explanation

First we use an example to show the idea. For simplicity, we only plot the
projections of the two time series as well as the envelope of the query time series
(time series T1) in the x− y plane. Note that in Figure 1a the four envelopes are
partly overlapped.
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Fig. 1. Two sample trajectories of length n = 128, with warping width c = 0.1n. The
true DTW distance DTW (T1, T2) = 36.84.

In Figure 1a are the original trajectories, and in Figure 1b are the rotated
trajectories. The y axis is scaled with respect to the coordinate range. After
rotation, the y axis has a very small span, because those points in time series
T1 almost lie in the same straight line. It’s clear that before rotation, time series
T2 is almost wholly inside the envelope of time series T1, while only a small
part of it is contained in the envelope of time series T1, after rotation. So, if
we rotate the trajectories by an appropriate angle, we can reduce the volume of
their envelopes, thus get a tighter lower bound.

However, we should note that, by rotating the time series, we can only reduce
the area of the envelopes in either the t − y plane or the t − x plane; we cannot
achieve area reduction in both planes. This is because the geometrical shape
of the time series is rotation-invariant. If it becomes flat in one direction after
rotation, it will surely become steep in the perpendicular direction. In the above
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example, the area of envelope in the t − x plane actually increases, which will
counteract the gain in the t−y plane. Nonetheless, if we can reduce enough area
of the envelopes in one direction, the result is still preferable, as we can see in
the experiment result in Section 4. To achieve this, we need to divide the time
series into several segments that are as straight as possible, because we can see
from the example in Figure 1 that straight time series will greatly reduce the
volume of envelope after rotation. The details will be introduced later.

3.2 Formal Definition of LB rotation

Based on above observation, we propose a new lower bound for the constrained
DTW, which we call LB rotation. To formally define LB rotation, we first define
time series segmentation, and the distance from a point to the envelope of a
segment.

Definition 4. The segmentation of a time series Q is to divide Q into consecu-
tive and non-overlapping segments si = Q[si.start, si.end] where ∪si = Q∧∀i �=
j : si ∩ sj = ∅.
Definition 5. The distance from a point q to the envelope Env(s) of a time
series segment s is defined as

d(q, Env(s)) = d(q, Env(s)i) =
l∑

p=1

⎧

⎪⎨

⎪⎩

(qp − ui,p)2 if qp > ui,p

(qp − li,p)2 if qp < li,p

0 otherwise

(4)

where i is the index of the matching point in s with respect to p.

How to decide this matching point will be deferred to Algorithm 2.

Definition 6. (LB rotation). The lower bound LB rotation of two time series
Q and C of length n is defined as

LB rotation(Q,C) =
n∑

i=1

min
sj∈Si

{d(ci, Env(sj))} (5)

where Env(sj) is the bounding envelope of segment sj, and Si = {sk | sk ∈
Q ∧ [sk.start, sk.end] ∩ [i − c, i + c] �= ∅}, c is the warping constraint.

For each point ci ∈ C, we compute the distance from ci to the segments in Q
that overlaps with Q[i − c, i + c] respectively, and sum up the minimal distance
regarding each point as the final lower bound. This ensures that no matter which
point qi ∈ Q is matched by ci, the contribution of ci to the lower bound will
never exceed d(ci, qi).

We can prove the following proposition.

Proposition 3. For any two sequences Q and C of the same length n, for any
global constraint on the warping path of the form j − c ≤ i ≤ j + c, the following
inequality holds: LB rotation(Q,C) ≤ DTW (Q,C).
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Proof. Sketch: ∀ci ∈ C, 1 ≤ i ≤ n, it may match the points in the range Q[i − c,
i + c], and its contribution to LB rotation is di = minsj∈Si

{d(ci, Env(sj))}. Sup-
pose there are m segments of Q intersecting with this range, and the real matching
point qi belongs to segment sk, then di ≤ d(ci, Env(sk)). Based on Equation (4) we
have d(ci, Env(sk)) ≤ d(ci, pj),∀pj ∈ sk ∧ j ∈ [i − c, i + c]. By transitivity, di ≤
d(ci, qi). Since DTW (Q,C) ≥ ∑n

i=1 d(ci, qi) ≥ ∑n
i=1 minsj∈Si

{d(ci, Env(sj))} =
LB rotation(Q,C), we can conclude that LB rotation lower bounds DTW.

3.3 Detailed Steps of LB rotation

It takes 4 steps to compute LB rotation:

1. Time series segmentation. As noted in Section 3.1, if we want to achieve
satisfactory lower bound via time series rotation, we need to apply segmenta-
tion on the query time series, then deal with each segment respectively. We
want each segment to be as straight as possible, so intuitively we should par-
tition the time series at those “turning points”. The classic Douglas-Peucker
algorithm [6] is used for the segmentation, since each resulted splitting point
is exactly such a turning point.
We demonstrate the result of segmentation in Figure 2a, where a time series
extracted from the Character Trajectories dataset is divided into 8 segments.
We can see that each segment is almost straight, with different length.

2. Segment rotation. After segmentation, we need to find the rotation angle
that best reduces the volume of envelopes. For each segment, we use least
square fitting to compute the direction of the corresponding major axis,
then we rotate each point p ∈ s around the origin by −s.θ to get the rotated
segment s′, where s.θ is the included angle between the major axis and the
x axis. Thus after rotation, the major axis of s′ is aligned with the x axis,
and the points in the time series segment will have a smaller span around
the x axis, which leads to a narrower envelope.

3. Extended envelope computation. The next step is to compute the enve-
lope for each rotated segment of query time series Q, which is almost the
same as the envelope computation of LB Keogh. The only difference is that,
in the original envelope, each point will cover at least c points of the time
series, however, after segmentation, the matching range may only intersect
with the beginning or ending k(1 ≤ k ≤ c) points of a certain segment.
Covering extra points will hurt the tightness of LB rotation.
To solve this problem, we pad c points at the start and end of segment s
respectively. When computing the upper bounding envelope, we fill the first
and last c points of the padded s with a value that is smaller than all the
values in s (e.g. −∞), while fill with a value that is larger than all the values
in s (e.g. +∞) when computing the lower bounding envelope.
We illustrate the extended envelope in Figure 2b. The original envelopes are
between the two dashed vertical lines, while the extended parts lie outside.

4. Lower bound computation. Now we have a series of rotated segments of
the query time series Q, we will describe for a candidate time series C in the
database, how to compute LB rotation(Q,C) using these segments.
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First, we need to find the corresponding matching point for the points in C,
in order to apply Equation (4). Given a point ci ∈ C, it may match any point
in Q[i − c, i + c] with respect to a warping constraint c. Since Q is divided
into a series of segments, the points in Q[i − c, i + c] may belong to different
segments, thus we should take care of different conditions. Specifically, if a
segment s intersects with Q[i − c, i + c], there are four possible situations.
(a) (s.start ≤ i − c) ∧ (s.end ≥ i + c), i.e. s contains Q[i − c, i + c].
(b) (sj .start ≥ i − c) ∧ (sj .end ≤ i + c), i.e. Q[i − c, i + c] contains s.
(c) (sj .start ≤ i + c) ∧ (sj .end > i + c), i.e. Q[i − c, i + c] contains the head

of s.
(d) (sj .start < i − c) ∧ (sj .end ≥ i − c), i.e. Q[i − c, i + c] contains the tail

of s.
The index of corresponding matching point is computed as in Algorithm 2,
which gives the final procedures of LB rotation.

(a)
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bounding envelope
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bounding envelope

(b)

Fig. 2. (a) The segmentation result of a time series from Character Trajectories dataset,
with m = 8. (b) The extended envelope of a time series T with length n = 128, and
warping constraint c = 0.1n.

3.4 Performance Analysis

We briefly analyze the time complexity of each step in Section 3.3.

1. Timeseriessegmentation.Fora timeseries of lengthn, theDouglas-Peucker
algorithm costs on average O(n log n), and O(n2) in the worst case.

2. Segment rotation. For a time series segment of length k, it costs O(k) to com-
pute the inclination angle of its major axis, and O(k) to rotate each point. So it
costs totally

∑m
i=1 O(ki) = O(n) in this step.
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Algorithm 2. Lower bound computation for LB rotation
Input: {Si}: each Si contains rotated segments of the query time series Q that intersect

with Q[i − c, i + c]
Input: C: candidate time series in the database
Output: d: the lower bound distance
1: function LB rotation({Si}, C)
2: d ← 0;
3: for ci ∈ C
4: distmin ← ∞
5: for sj ∈ Si

6: if (sj .start ≤ i − c) ∧ (sj .end ≥ i + c)
7: index ← i + c − sj .start
8: else if (sj .start ≥ i − c) ∧ (sj .end ≤ i + c)
9: index ← c + (sj .end − sj .start)/2

10: else if (sj .start ≤ i + c) ∧ (sj .end > i + c)
11: index ← i + c − sj .start
12: else if (sj .start < i − c) ∧ (sj .end ≥ i − c)
13: index ← sj .end − i

14: c′
i ← ci rotated by − sj .θ � sj .θ is the inclination angle of the major

axis of sj
15: t ← d(c′

i, Env(sj)index) � Equation (4)
16: if distmin > t
17: distmin ← t

18: d ← d + distmin

19: return d

3. Extended envelope computation. For a time series segment of length k,
it costs O(k+2ck/n) to compute the extended envelope using the streaming
algorithm introduced in [11], so in total

∑m
i=1 O(ki + 2cki/n) = O(n + 2c).

4. Lower bound computation. With warping constraint c, and the num-
ber of segment m, on average the matching range of each point will cover
min{m, �2cm/n} segments, thus the time complexity of LB rotation is
asymptotically O(min{m, �2cm/n}n).

The first three steps can be precomputed before entering the for loop in
Algorithm 1 of Algorithm 1, so the cost will be amortized. If there are enough
candidate time series, this amortized overhead is negligible, just as what we
observed in the experiment. While for the last step, as m is generally fixed,
the time complexity increases with c. However, since generally LB rotation will
produce tighter lower bound, it requires fewer expensive DTW computations,
thus the overall time needed to perform nearest neighbor search will be reduced.

Because the actual performance of all the lower bounding techniques is
data-dependent, we only give a rough analysis here, and compare LB Keogh,
LB Lemire and LB rotation through experiments on different datasets.
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4 Experiment

4.1 Setup and Datasets

We implemented the algorithms in C++, compiled by g++ 4.9.1. The platform
is a ThinkPad X220 running Arch Linux, with 8GB of RAM and a 2.6GHz Intel
Core i7 processor.

We use two real world datasets for experiments.

– The Character Trajectories1 dataset from the UCI Machine Learning Repos-
itory [2], which contains 2858 trajectories of writing 20 different letters with
a single pen-down segment. The length of each trajectory varies between 109
and 205, and we rescaled them to the same length of 128, using Piecewise
Aggregate Approximation [8] (for longer trajectories) or linear interpolation
(for shorter trajectories).

– The GeoLife2 dataset [22–24] from MSRA, which contains 17,621 trajectories
of 182 users in a period of over three years. We extracted those trajectories
containing at least 1000 sample points for experiment, and rescaled them to
length 256.

The time series in both datasets are all z-normalized [13]. We assume the
datasets are already loaded into memory before running following experiments,
and the true DTW distance is computed using the standard O(mn) dynamic
programming algorithm, subjected to the corresponding warping constraint c.

The compiled executable and preprocessed datasets are freely available at
[1], including the python script to compute the accuracy of 1 Nearest Neighbor
classification on Character Trajectories dataset.

4.2 Evaluation Metrics

The effectiveness of a lower bound is usually reflected in the tightness, pruning
power and the overall wall clock time. The first two metrics are independent
of implementation details, while the last one may vary. Nonetheless, the wall
clock time is still an important metric, since although some lower bound may
be tighter than others, it actually will cost much more time to compute, which
largely nullifies its effectiveness [19].

Following [9], we define the tightness of a lower bound as

T =
Lower Bound of DTW Distance

True DTW Distance
(6)

and define pruning ratio as

P =
Number of Omitted Full DTW Computation

Number of Objects
. (7)

Both T and P are in the range [0, 1], and the larger the better.
1 http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
2 http://research.microsoft.com/en-us/projects/geolife/

http://archive.ics.uci.edu/ml/datasets/Character+Trajectories
http://research.microsoft.com/en-us/projects/geolife/
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To evaluate the tightness of each lower bounding method, we randomly sam-
pled 100 time series from the dataset, then computed the three lower bounds as
well as the true DTW distance for each pair of them (in total 9900 pairs), and
recorded the corresponding tightness. The average over 9900 pairs is reported.
Note that we have to compute the lower bound between each pair, since these
lower bounds are not symmetric, i.e. LB(T1, T2) = d �⇔ LB(T2, T1) = d.

To evaluate the pruning power of each lower bounding method, we randomly
sampled 100 time series from the dataset, then for each time series, we per-
formed 1-Nearest Neighbor search on the rest 99 time series, using Algorithm 1,
by plugging in each lower bounding method in Algorithm 1, and recorded the
corresponding pruning ratio. The average over 100 time series is reported.

To evaluate the efficiency of each lower bounding method, for each dataset, we
randomly sampled 1000 time series from it, then performed 1-Nearest Neighbor
(1NN) search for 50 randomly sampled time series from the same dataset, using
Algorithm 1, by plugging in each lower bounding method in Algorithm 1. In order
to rule out the influence of random factors, the 1NN search time for each time
series is reported as the average over 10 runs. We repeated above experiments
with various parameter combinations.

4.3 The Effect of Segment Number m

First, we inspect how the number of segments will affect the tightness and prun-
ing power of LB rotation. Since this parameter is only used in LB rotation, we
do not compare with the other two lower bounding methods.

We randomly sample 1000 trajectories from the GeoLife dataset, then com-
pute pair-wise lower bound using LB rotation as well as the true DTW distance,
and record the corresponding tightness. The pruning ratio and 1NN search time
are gathered through 1NN search for 50 random sampled time series. The aver-
ages are reported in Figure 3. For the Character Trajectories dataset, we observe
similar results, and we only report one of them for brevity.

We can see that the tightness and pruning power increases with m, however,
for larger m the 1NN search time becomes longer, because the saved DTW
computation cannot break even the time needed to compute LB rotation. We
empirically find that m = 8 achieves a good compromise between the pruning
ratio and extra computation overhead. In the following, if not otherwise stated,
we set m = 8 for all the experiments.

4.4 The Effect of Warping Constraint c on Tightness and Pruning
Power

In the following, we present the tightness and pruning power of the three lower
bounding techniques, with respect to varying warping constraint, on different
datasets. The warping constraint c varies from 0 (corresponding to Euclidean
distance) to n (corresponding to unconstrained DTW distance), with step size
0.05n. The results are presented in Figure 4a through Figure 4d.
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Fig. 3. Tightness, pruning power and 1NN search time vs. number of segments on
GeoLife dataset. Warping constraint c = 0.1n.

First of all, we need to point out that for the Character Trajectories dataset,
under the optimal constraint c = 0.4n, LB rotation is 2× as tight as LB Keogh,
and 1.3× as tight as LB Improved. It prunes 30% and 16% more unqualified
candidates respectively when compared with LB Keogh and LB Improved. This
optimal constraint is obtained by testing different warping constraint on the
Character Trajectories dataset, since the trajectories are labeled, they can be
used to test the classification accuracy. We used 1-Nearest Neighbor classification,
and validated the result by leave-one-out validation. As for the GeoLife dataset,
due to the lack of labels, we cannot decide the optimal warping constraint for
1NN classification, however we noticed there are trajectories that are almost
identical, while largely shifted along the time axis (about half of the trajectory
length), which indicates that large warping constraint should be used to correctly
align these trajectories.

From Figure 4a through Figure 4d we can observe that LB rotation con-
sistently achieves higher tightness and pruning power than LB Keogh, which
demonstrates the effectiveness of time series rotation.

For c ≥ 0.4n, LB rotation outperforms LB Improved in terms of both tight-
ness and pruning ratio. Because as c increases, the volume of the envelope will
also increase, since it will cover more data points, and intuitively, the probability
of including points with large values is proportional to the covering range of the
envelope, thus the envelope will be enlarged. On the other hand, if we rotate
each segment respectively, recall Figure 1, even the covering range increases, the
volume of the envelope won’t increase much. As a result, although larger c will
hurt the tightness and pruning ratio of all the three lower bounds, the influence
on LB rotation is obviously smaller.

When c is relatively small (< 0.4n), LB rotation generally achieves compa-
rable or even higher tightness than LB Improved, although the pruning ratio of
the latter is sometimes better. This is because with small warping constraints,
LB Keogh has considerably good tightness, thus it requires only a few second
pass computations for LB Improved, which will not improve the tightness much.
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Fig. 4. Tightness and pruning ratio w.r.t. varying warping constraint c on different
datasets. (a)-(b): Character Trajectories dataset; (c)-(d): GeoLife dataset.

However, these second pass computations do help to prune more candidates, so
the pruning ratio of LB Improved will increase.

We also note that even in the extreme situation where c = n (unconstrained
DTW), LB rotation can still achieve pruning ratio around 40%, while both
LB Keogh and LB Improved have pruning ratio hardly exceeds 20%.

4.5 The Effect of Warping Constraint c on Search Time

In this experiment, we compare the wall clock time for 1NN search on different
datasets, with respect to varying warping constraint from 0 to n, increasing at
step size 0.05n.

From Figure 5a and Figure 5b we find that the 1NN search time agrees
with tightness and pruning ratio we just depicted in Section 4.4 very well. The
result indicates that on all the datasets, LB rotation will achieve the fastest 1NN
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Fig. 5. 1NN search time w.r.t. varying warping constraint c on (a) Character Trajec-
tories dataset; (b) GeoLife dataset

search once the warping constraint c exceeds 0.4n. We have shown that warping
constraints this large are realistic for some real world applications. Figure 5a
shows that for the Character Trajectories dataset, under the optimal warping
constraint c = 0.4n, LB rotation costs about half the time of LB Keogh, and
about 60% of LB Improved. Actually this trend starts once c exceeds 0.2n.

5 Conclusion and Future Work

In this paper, we propose a new lower bounding technique LB rotation for con-
strained DTW, which is based on the observation that if the time series is in
multi-dimensional space, it can be rotated around the time axis to reduce the
volume of its bounding envelope, and as a consequence, the tightness and prun-
ing power of the lower bound will increase. Then we notice that if we divide
the time series into several segments as straight as possible, then treat them
separately, the effectiveness can be further improved, so we use a greedy algo-
rithm to achieve this. We carried out experiments on real world datasets, which
demonstrate the superiority of LB rotation over state-of-the-art lower bounding
techniques.

With more and more high dimensional time series being generated nowadays,
it is of significant importance to effectively process them. In the future, we intend
to further investigate how to utilize the characteristics of multi-dimensional time
series to achieve even better result.
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